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Abstract. By means of the Howard-Busse method of the optimum theory of turbulence we obtain upper
bounds on the convective heat transport in a horizontal fluid layer heated from below and rotating about a
vertical axis. We consider the interval of large Taylor numbers where the intermediate layers of the optimum
fields expand in the direction of the corresponding internal layers. We consider the 1 − α-solution of the
arising variational problem for the cases of rigid-stress-free, stress-free, and rigid boundary conditions. For
each kind of boundary condition we discuss four cases: two cases where the boundary layers are thinner
than the Ekman layers of the optimum field and two cases where the boundary layers are thicker than
the Ekman layers. In most cases we use an improved solution of the Euler-Lagrange equations of the
variational problem for the intermediate layers of the optimum fields. This solution leads to corrections of
the thicknesses of the boundary layers of the optimum fields and to lower upper bounds on the convective
heat transport in comparison to the bounds obtained by Chan [J. Fluid Mech. 64, 477 (1974)] and Hunter
and Riahi [J. Fluid Mech. 72, 433 (1975)]. Compared to the existing experimental data for the case of a
fluid layer with rigid boundaries the corresponding upper bounds on the convective heat transport is less
than two times larger than the experimental results, the corresponding upper bound on the convective
heat transport, obtained by Hunter and Riahi is about 10% higher than the bound obtained in this article.
When Rayleigh number and Taylor number are high enough the upper bound on the convective heat
transport ceases to depend on the boundary conditions.

PACS. 47.27.Te Convection and heat transfer – 47.27.Cn Transition to turbulence

1 Introduction

The mathematical theory of the upper bounds on the
convective heat transport was formulated by Howard
[1] following the ideas of Malkus [2,3]. Howard ob-
tained upper bounds on the convective heat transport
through a horizontally infinite fluid layer on the basis of
single-wavenumber solutions (1 − α-solutions) of a vari-
ational problem. Busse [4] introduced the more compli-
cated multi-wavenumber (multi-α)-solutions of the vari-
ational problems of the optimum theory of turbulence.
He has shown that the nonlinear Euler-Lagrange equa-
tions of the variational problems can have many coex-
isting solutions (with different numbers of wave num-
bers) for the same value of the Rayleigh number. Each
of these solutions leads to an upper bound on the
heat transport in a region of Rayleigh numbers. At the
upper boundary of the nth region the upper bounds
obtained by n − α and n + 1 − α-solutions of the
Euler-Lagrange (n = 1, 2, 3...) have the same value,
and with increasing Rayleigh number the n + 1 − α-
solution leads to the upper bound on the convective heat
transport. Chan [5] developed further the Howard-Busse

a e-mail: vitanov@mpiks-dresden.mpg.de

method by an introduction of intermediate sublayers
between the internal and boundary sublayers of the fields
corresponding to a wave number of the multi-α-solutions
of the Euler-Lagrange equations. The presence of rotation
leads to complicated variational problems that allow solu-
tions based on optimum fields without or with presence of
Ekman sublayer in them [6–8]. The Howard-Busse method
has been applied to many systems [9-25] and considerable
efforts have been expanded to tighten the bounds by im-
position of additional constraints onto the extremalizing
vector fields. Busse [15] proposed to use as constraints the
separate energy balances for toroidal and poloidal compo-
nents of the velocity field. This idea is not applicable to
all problems of the optimum theory of turbulence as has
been shown by Kerswell and Soward [26] for the special
case of plane Couette flow. Recently [27] it has been shown
that for a horizontal layer of finite Prandtl number, heated
from below, and rotating about a vertical axis, the use of
the separate energy balances for the toroidal and poloidal
components of the velocity field leads to an improving
of the upper bounds on the convective heat transport.
The realisation of the last idea opens a new possibility for
tightening the upper bounds on the turbulent transport
quantities.
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Another direction in the development of the optimum
theory of turbulence was set by Doering and Constantin
[28]. They developed a method based on the idea of a de-
composition of the velocity into a steady background field
that carries the inhomogeneous boundary conditions, and
a homogeneous fluctuations field. The background field
has to satisfy certain spectral constraints and a success-
ful construction of an appropriate background field leads
quickly to estimates of bounds of the turbulent quanti-
ties. This method as well as the energy balance parame-
ter modification proposed by Nicodemus, Grossmann and
Holthaus found many applications for shear flows and
thermal convection problems [29-40]. Kerswell [41-43] dis-
cussed the relationship between the Doering-Constantin
and Howard-Busse methods and formulated variational
problems for Navier-Stokes equations. From the latest de-
velopments in this area we would like to mention the use
of the Kolmogorov length scale as a constraint in the vari-
ational problem [37], the use of a smoothness constraint
for lowering dissipation bounds for turbulent shear flows
and bounds on the heat transport for the thermal convec-
tion [44,45], and the obtained upper bounds for: energy
dissipation in a shear layer with suction [46]; mixing rate
in turbulent stably stratified Couette flow [47]; bounds on
the convective heat transport in containers [48] as well as
the bounds for infinite Prandtl number convection with or
without rotation [49,50]. The last bounds will be discussed
in more details in the last section of this article.

In our previous article [8] we have presented an asymp-
totic theory for the 1−α-solution of the variational prob-
lem for the upper bounds on the convective heat transport
in a heated from below horizontal fluid layer which rotates
about the vertical axis with a constant angular velocity Ω
(see Fig. 1) for the case of intermediate Taylor numbers.
In this article we obtain upper bounds on the convective
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Fig. 1. The studied system. T ∗ is the temperature of the up-
per boundary of the fluid layer. Ω, d, and ∆T are the angular
velocity, thickness of the fluid layer and the temperature dif-
ference between the bottom and top boundaries of the fluid
layer.

heat transport for the interval of large Taylor numbers.
The characteristic features of the optimum fields in the
last region of Taylor numbers are as follows. We discuss
below optimum fields that possess eight layers: four from
the midplane of the fluid layer in the direction of the up-
per boundary of the fluid layer and four layers from the
midplane of the fluid layer to the lower boundary of the

fluid layer. The layers from the midplane of the fluid layer
in the direction of one of the fluid boundaries are: inter-
nal layer, intermediate layer, Ekman layer and boundary
layer Figure 2. We note that for the case of a fluid layer
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Fig. 2. A sketch of the optimum field S = w1θ1 and its layer
structure. In all layers except in the boundary ones w1θ1 ≈ 1.

with rigid lower boundary and stress-free upper bound-
ary an asymmetry can exist in the sizes of the different
layers of the studied optimum field. The reason for this
are the different boundary conditions on the top and bot-
tom boundaries of the fluid layer. When we discuss a fluid
layer with two rigid boundaries or a fluid layer with two
stress-free boundaries it is sufficient to consider only the
half of the layers of the corresponding optimum field: these
ones from the midplane of the fluid layer in the direction
of the lower boundary of the fluid layer. We note further
that the strong rotation can influence the internal layers
of the optimum field. The intermediate layers expand in
the direction of the corresponding internal layers. In most
of the cases discussed below we treat the neighbouring in-
termediate and internal layers as one layer and we shall
call this joint layer intermediate layer. The only exception
will be for the case 3 of the discussion of the fluid layer
with stress-free boundaries in Section 4. In this case we
shall discuss optimum fields with and without an Ekman
layer. For the case of an optimum field without an Ekman
layer we shall treat the intermediate and internal layer as
different ones. Another feature is that when the Rayleigh
and Taylor numbers are high enough the boundary layer
thickens, its width exceeds the width of the Ekman layer of
the optimum field, and the upper bound on the convective
heat transport decreases.

The structure of the article is as follows. In Section 2
we briefly formulate the variational problem. In Section 3
we discuss the basic case of our investigation: a fluid layer
with rigid lower boundary and stress-free upper boundary.
Section 4 is devoted to the case of a fluid layer with two
stress-free boundaries and in Section 5 we discuss the fluid
layer with two rigid boundaries. The intervals of validity
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of the obtained bounds are discussed in Section 6. Finally
in Section 7 we discuss and compare the obtained results
to other theoretical and experimental studies of the same
or similar problem.

2 Mathematical formulation of the problem

Our investigation is based on the Boussinesq approxima-
tion to the equations of the fluid flow [51]. We denote the
layer thickness as d, the thermometric conductivity and
kinematic viscosity of the fluid as κ and ν, the acceleration
of the gravity as g, the coefficient of thermal expansion as
γ, the temperature difference between the upper and lower
fluid boundary as ∆T and the mean density of the fluid as
ρ. Taking d as an unit for length, κ/d as unit for velocity,
d2/κ as unit for time and ρνκ/d2 as unit for pressure we
obtain the dimensionless form of the Boussinesq equations

1
P

(
∂u
∂t

+ u · ∇u
)

= −
√
Ta

2
∇p+∇2u

+RTk +
√
Tau× k (1a)

∂Θ

∂t
+ u · ∇Θ = ∇2Θ (1b)

∇ · u = 0. (1c)

The boundary conditions can be rigid ones: u3 =
∂u3/∂z = T = 0; stress-free ones: u3 = ∂2u3/∂z

2 =
T = 0; or mixed ones. P = ν/κ is the Prandtl number,
Ta = (4Ω2d4)/ν2 is the Taylor number, R =
(γg∆Td3)/(κν) is the Rayleigh number, p is the pres-
sure, and k is the unit vector in the direction opposite
to the gravity. Below we shall denote the averages of the
quantities over the planes z = const. as q and the aver-
ages over the fluid layer as 〈q〉. Θ is the total temperature
field in (1a) and T is the deviation of the temperature
field from its horizontal mean: Θ = Θ + T . We formulate
a variational problem for obtaining an upper bound on
the convective heat transport, i.e. on the Nusselt number:
Nu = 1 + 〈u3T 〉. We assume that all necessary horizontal
averages of the functions describing the flow exist, that
the horizontal averages of the fluctuation quantities van-
ish, and that the flow is statistically steady in time and
homogeneous in the horizontal averages.We introduce the
above-mentioned decomposition of the total temperature
field in the Boussinesq equations, multiply (1a) by the
velocity u and the average over the fluid layer. Thus we
obtain the following power integral

〈| ∇u |2〉 = R〈u3T 〉.
Another power integral can be obtained by a multipli-
cation of the heat equation by T and by averaging the
result over the fluid layer. The obtained relationship con-
tains the term 〈u3T (∂Θ/∂z)〉 that can be transformed by
a horizontal averaging of the heat equation and integrat-
ing the obtained result with respect to z. As a result we
obtain the second power integral

〈| ∇T |2〉 = 〈u3T 〉2 − 〈u3T
2〉+ 〈u3T 〉.

In the case of infinite Prandtl number the Navier-
Stokes equation becomes linear and we can include it as
a constraint in the variational problem. We take into ac-
count the equation of continuity by the general represen-
tation of a solenoidal field u in terms of a poloidal and a
toroidal component

u = ∇× (∇× kφ) +∇× kψ.

We introduce the toroidal-poloidal decomposition of the
velocity field into the linearised Navier-Stokes equation
and perform the rescalings

u = 〈u3T 〉1/2R1/2v; T = 〈u3T 〉1/2R−1/2θ.

Let us denote the z-component of the rescaled velocity
field v as w. Taking the z-component of the horizontal
curl and z-component of the double curl of the last result
we obtain two relationships that help us to obtain the
following expression for the rescaled second power integral

〈u3T 〉 =
〈wT 〉 − (1/R)〈| ∇θ |2〉
〈(〈wθ〉 − wθ)2〉

· (2)

We impose the condition: 〈wθ〉 = 1, denote the
vertical component of the vorticity as f = −∇2

1ψ (∇2
1

is the horizontal Laplacian) and write the variational
problem as follows:

Find the maximum F (R, Ta) of the variational func-
tional

F(w, θ, f,R, Ta) =
1− (1/R)〈| ∇θ |2〉
〈(1− wθ2〉

+2λ∗〈wθ − 1〉+ 2
〈
p∗
(
∇2f +

√
Ta

∂w

∂z

)〉
+2
〈
q∗
(
∇4w +∇2

1θ −
√
Ta

∂f

∂z

)〉
(3a)

among all fields w, θ, f subject to boundary conditions cor-
responding to rigid-stress-free, rigid or stress-free bound-
aries. For a fluid layer with rigid lower boundary and
stress-free boundaries. For a fluid layer with rigid lower
boundary and stress-free upper boundary

w1 = θ1 =
dw1

dz
= f1 = 0, (3b)

at z = 0 and

w1 = θ1 =
d2w1

dz2
=

df1

dz
= 0, (3c)

at z = 1. For a fluid layer with two stress-free boundaries
the boundary conditions are (3c) at z = 0, 1. For a fluid
layer with two rigid boundaries the boundary conditions
are (3b) at z = 0, 1. The 1−α-solutions of the variational
problem (for more details see [1,4,8]) have the form

w = w1(z)φ(x, y), θ = θ1(z)φ(x, y), f1 = f1(z)φ(x, y)
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where the average of the function φ2 over the horizontal
plane is equal to 1 and ∇2

1φ = −α2
1φ (α1 is the wave

number connected to the 1−α-solution of the variational
problem).

The Euler-Lagrange equations corresponding to the
1− α-solution of the variational problem are

(
d2

dz2
− α2

1

)3

w1 + Ta
d2w1

dz2
− α2

1

(
d2

dz2
− α2

1

)
θ1 = 0,

(4a)

1
RF1

(
d2

dz2
− α2

1

)[(
d2

dz2
− α2

1

)3

+ Ta
d2

dz2

]
θ1

+

[(
d2

dz2
− α2

1

)3

+ Ta
d2

dz2

][
w1

(
1− w1θ1 +

λ

F

)]
−α2

1

(
d2

dz2
− α2

1

)[
θ1

(
1− w1θ1 +

λ

F1

)]
= 0,

(4b)

(
d2

dz2
− α2

1

)
f1 +

√
Ta

dw1

dz
= 0, (4c)

where

1
2
≤ λ =

1
2

(
2− 1

R
〈| ∇θ |2〉

)
≤ 1. (4d)

F1 is the maximum of the convective heat transport con-
nected to the 1− α-solution of the variational problem.

The equations (4a–d) are the same for all three cases
of boundary conditions, discussed in this article. For the
case of a fluid layer with two stress-free boundaries these
equations have been obtained by Chan [6]. We refer to
[6] for more details about the process of obtaining of the
Euler-Lagrange equations.

3 Fluid layer with rigid lower boundary
and stress-free upper boundary

3.1 Case 1: Ekman layer is thicker than the boundary
layer and O(Ta1/8)� α1 � O(R1/4)

We can describe the internal and intermediate layers of
the optimum fields with the same approximation to the
Euler-Lagrange equations of the variational problem. In
the internal and intermediate layers the assumption is
w1θ1 = 1. In addition we assume that in these layers the
terms containing the derivatives and not containing the
Taylor number are much smaller than the other terms in
the Euler-Lagrange equations. The Euler-Lagrange equa-
tions (4a–c) become

−α6
1w1 + Ta

d2w1

dz2
+ α4

1θ1 = 0, (5a)

α2
1f1 = Ta1/2 dw1

dz
, (5b)

w1θ1 = 1. (5c)

Let w1 = w̌1/α1; θ1 = θ̌1α1 and κ2 = Ta/α6
1. From (5a)

we obtain the equation

κ2 d2w̌1

dz2
= w̌1 −

1
w̌1
· (6)

We note that Ta ≥ α6
1 and κ is not a small quantity. The

solution of (6) for small values of the coordinate z in the
lower intermediate layer is

w̌1 ≈
z + z0

κ

√
ln
[

1
(z + z0)2

]
− ln ln

[
1

(z + z0)2

]
. (7a)

This solution satisfies also the first integral of (6) for small
values of z. For the upper intermediate layer we introduce
the coordinate z∗ = 1 − z. The Euler-Lagrange equation
(5a) can be reduced to an equation similar to (6). The
solution of this equation for small values of z∗, which in
addition satisfies also the first integral of (6), is

w̌1 ≈
z∗ + z∗0
κ

√
ln
[

1
(z∗ + z∗0)2

]
− ln ln

[
1

(z∗ + z∗0)2

]
.

(7b)

z0 and z∗0 are constants which will be determined by the
matching of the solutions of the Euler-Lagrange equations
between the intermediate and Ekman layers of the opti-
mum fields.

The Euler-Lagrange equations for the Ekman layers of
the optimum fields are (5c) and

d4w1

dz4
− Ta1/2 df1

dz
= 0, (8a)

d2f1
dz2

+ Ta1/2 dw1

dz
= 0. (8b)

For the lower Ekman layer we introduce the coordinate
φl = Ta1/4z/

√
2 and obtain the following solutions of the

Euler-Lagrange equations

w1 = cl
√

2− 2cle−φl cos(φl − π/4), (9a)

f1 = Ta1/4(2cl − 2cle−φl cos(φl)), (9b)
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which satisfy the boundary conditions w1 = f1 =
dw1/dz = 0 at z = 0. The constant cl is determined by
the matching of the solutions of the Euler-Lagrange equa-
tions between the intermediate and Ekman layers. This
matching is performed for large φl and for small z + z0.
As a result we obtain the relationships

cl =
z0

α1κ
√

2

√
ln
(

1
z2

0

)
− ln ln

(
1
z2

0

)
, (10a)

cl =
Ta1/4

2α3
1κ

√
ln
(

1
z2

0

)
− ln ln

(
1
z2

0

)
. (10b)

(10a) and (10b) lead to

z0 =
Ta1/4

√
2α2

1

, (11a)

cl =
1

2Ta1/4

√
ln
(

2α4
1

Ta1/2

)
− ln ln

(
2α4

1

Ta1/2

)
. (11b)

For the upper Ekman layer the coordinate is φu =
Ta1/4(1− z)/

√
2 and the solutions of the Euler-Lagrange

equation are

w1 = cu(1− e−φu cosφu), (12a)

f1 =
1
2
Ta1/4

[√
2cue−φu cosφu −

√
2cue−φu sinφu

+2
√

2cuφu + 2kTa1/4
]
(12b)

where k is a constant that can be estimated by the value
of f at φu = 0. The only assumption that does not conflict
to the other assumptions and constraints is that the terms√

2cu and 2kTa1/4 are of the same order and have different
signs. Thus we obtain the estimation

k ∝ −cu/(
√

2Ta1/4).

The matching between the solutions for the upper Ek-
man and upper intermediate layers leads to the relation-
ships

z∗0 =
√

2Ta1/4

α2
1

, (13a)

cu =
√

2
Ta1/4

√
ln
(

α4
1

2Ta1/2

)
− ln ln

(
α4

1

2Ta1/2

)
. (13b)

For the Euler-Lagrange equations in the boundary lay-
ers we assume that the terms which contain the high-
est derivatives are dominant in the considered interval of
Taylor numbers. Thus we obtain

d4w1

dz4
= 0, (14a)

1
RF1

d2θ1

dz2
+ w1(1− w1θ1) = 0, (14b)

d2f1

dz2
= 0. (14c)

For the lower boundary layer we introduce the coordinate
ηu = z/δl and the solution for w1 is obtained by a Taylor
expansions of the relationship for w1 in the lower Ekman
layer when φl → 0, taking the leading order of this ex-
pansion, and changing the coordinate from φl to ηl. The
result is

w1 =
1√
2
clTa

1/2δ2
l η

2
l . (15a)

(15a) satisfies the corresponding Euler-Lagrange equation
as well as the rigid boundary conditions on w1 when
ηl = 0. The expression for f1 is

f1 =
√

2clTa1/2δlηl. (15b)

For the upper boundary layer we introduce the coordinate
ηu = (1−z)/δu and from the relationships for w1 and f1 in
the Ekman layer the following relationships for the upper
boundary layer are obtained

w1 =
cuδuTa

1/4ηu√
2

, (16a)

f1 =
1
2
Ta1/4

[
2kTa1/4 +

√
2cu

(
1 +

Ta1/2δ2
uη

2
u

2

)]
.

(16b)

(16b) is obtained from (12b) for small values of φu and
representing e−φu , sin(φu) and cos(φu) by means of Taylor
series. In order to solve the equation (14b) for the lower
boundary layer we introduce the relationship

RF1δ
6
l c

2
l Ta = 2, (17a)

and thus we have to solve the equation

d2θ̂1

dη2
l

+ η2
l (1− η2

l θ̂1) = 0, (17b)
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where θ1 =
√

2θ̂1/(clδ2
l Ta

1/2) and with corresponding
boundary condition at ηl = 0. In the same manner for
the upper boundary layer

RF1c
2
uδ

4
uTa

1/2 = 2. (17c)

The resulting equation is

d2θ̂1

dη2
u

+ ηu(1− ηuθ̂1) = 0, (17d)

with corresponding boundary conditions and

θ1 =
√

2θ̂1/(cuδuTa1/4).

In order to obtain relationships for the upper bound
on the convective heat transport and for corresponding
wave number and boundary layer thicknesses we have to
calculate the integrals in the expression for F

F =
1− (1/R)〈| ∇θ1 |2〉
〈(1− w1θ1)2〉

· (18a)

F can be written as

F =
1− α4

1/R

δlDl + δuDu
, (18b)

where

Dl = Il + Jl, Du + Iu + Ju, (18c)

Il =
∫ ∞

0

dηl(1− η2
l θ̂1)2 = 0.9255, (18d)

Iu =
∫ ∞

0

dηu(1− ηuθ̂1)2 = 0.79635, (18e)

Jl =
∫ ∞

0

dηl

(
dθ̂1

dη2
l

)2

= 0.1851, (18f)

Ju =
∫ ∞

0

dηu

(
dθ̂1

dη2
u

)2

= 0.2635. (18g)

From (17a, 17c) and (18b) we determine F , δu and δl. As-
suming that the thicknesses of the upper and lower bound-
ary layers are of the same order, we obtain

δl = 23/5(Du +Dl)1/5(R − α4
1)−1/5Ta−1/10

×
[
ln
(

2α4
1

Ta1/2

)
− ln ln

(
2α4

1

Ta1/2

)]−1/5

, (19a)

δu = 23/20(Du +Dl)3/10(R − α4
1)−3/10Ta−1/40

×
[
ln
(

2α4
1

Ta1/2

)
− ln ln

(
2α4

1

Ta1/2

)]−1/20

×
[
ln
(

α4
1

2Ta1/2

)
− ln ln

(
α4

1

2Ta1/2

)]−1/4

,

(19b)

F = 2−3/5(Du +Dl)−6/5R−1(R − α4
1)6/5Ta1/10

×
[
ln
(

2α4
1

Ta1/2

)
− ln ln

(
2α4

1

Ta1/2

)]1/5

.

(19c)

In order to obtain a maximum value of the convective heat
transport we note that F1 increases with increasing α1 and
that we must have α4

1 ≤ O(R). Thus when α1 ∝ O(Ta1/6)
in the interval

O(Ta1/8)� α1 ≤ O(R1/4). (20a)

we obtain

δu ∝ 23/20(Du +Dl)3/10R−3/10Ta−1/40
[

ln(2Ta1/6)

− ln ln(2Ta1/6)
]−1/20[

ln(Ta1/6/2)− ln ln(Ta1/6/2)
]−1/4

,

(20b)

δl ∝ 23/5(Du +Dl)1/5R−1/5Ta−1/10
[

ln(2Ta1/6)

− ln ln(2Ta1/6)
]−1/5

,

(20c)

F1 ∝ 2−3/5(Du +Dl)−6/5R1/5Ta1/10
[

ln(2Ta1/6)

− ln ln(2Ta1/6)
]1/5

.(20d)

3.2 Case 2: Ekman layer is thicker than the boundary
layer and O((Ta/R)1/2)� α1 � O(Ta1/8)

In the intermediate and the Ekman layers we have w1θ1

≈ 1. For the lower intermediate layer w1 = w0l/α1;
θ1 = α1/w0l where w0l is a small constant. In addition
the following condition must be satisfied: α2

1f1 � 1. The
Euler-Lagrange equation for f1 is

(
d2

dz2
− α2

1

)2

w1 − α2
1θ1 − Ta

df1

dz
= 0, (21a)
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and the solution for f1 is

f1 =
α3

1

w0lTa

(
1
2
− z
)
. (21b)

For the upper intermediate layer we have w1 = w0u/α1;
θ1 = α1/w0u where w0u is a small constant. The solution
of (21a) for this layer is

f1 =
α3

1

w0uTa

(
z − 1

2

)
. (21c)

The coordinate for the lower Ekman layer is φl =
Ta1/4z/

√
2 and the solution of the Euler-Lagrange equa-

tions are (9a) and (9b). The matching of the solutions
between the intermediate and Ekman layers leads to the
relationships

w0l = 2−3/4α2
1Ta

−3/8, (22a)

cl = 2−5/4α1Ta
−3/8. (22b)

For the upper Ekman layer the coordinate is φu =
Ta1/4(1− z)/

√
2 and the solutions of the Euler-Lagrange

equations are (12a) and (12b). The matching of the solu-
tions between the upper intermediate and Ekman layers
leads us to the relationships

w0u = 2−1/4α2
1Ta

−5/8, (23a)

cu = 2−1/4α1Ta
−5/8. (23b)

For the upper and lower boundary layers we introduce
the coordinates ηu,l = z/δu,l and match the solutions of
the Euler-Lagrange equations for the Ekman layers in the
boundary ones. Thus for the lower boundary layer we ob-
tain (15a) and (15b) for w1 and f1 as well as the equation
(17b) for θ̂1 and the relationship (17a). The corresponding
relationships and equations for the upper boundary layer
are (16a, 16b, 17c) and (17b). The relationships for the
convective heat transport and for the thicknesses of the
boundary layers can be obtained by means of (17a, 17c)
and (18b). The results are

δl = 27/10(Du +Dl)1/5α
−2/5
1 Ta−1/20(R − α4

1)−1/5,
(24a)

δu = 211/20(Du +Dl)3/10α
−3/5
1 Ta7/40(R− α4

1)−3/10,
(24b)

F1 = 2−7/10(Du +Dl)−6/5α
2/5
1 Ta1/20R1/5(1− α4

1/R)6/5.
(24c)

As F1 increases with increasing α1 a maximum of F1 can
be obtained when α1 → O(Ta1/8). Then

F1 ∝ 2−7/10(Du +Dl)−6/5Ta1/10R1/5, (25a)

δl ∝ 27/10(Du +Dl)1/5Ta−1/10R−1/5, (25b)

δu ∝ 211/20(Du +Dl)3/10Ta1/10R−3/10. (25c)

3.3 Case 3: Boundary layer is thicker than the Ekman
layer and O((R ln R)4/3)� O(Ta)� O(R3/2)

In the intermediate and Ekman layers w1θ1 ≈ 1. The
matching of the solutions of the Euler-Lagrange equations
of the variational problem is performed between inter-
mediate and boundary layers. The Euler-Lagrange equa-
tions for the intermediate layers of the optimum fields
are obtained by the assumption that the terms contain-
ing derivatives and not containing the Taylor number are
much smaller than the other terms. Thus the equations are
(5a–c) and the solution for w1 in the lower intermediate
layer is

w1 =
ξl
α1

√
ln
(

1
ξ2
l

)
− ln ln

(
1
ξ2
l

)
. (26)

ξl = α3
1z/Ta

1/2 is the coordinate in the lower interme-
diate layer of the optimum field w1θ1. The solutions of
the Euler-Lagrange equations for w1 and f1 in the lower
Ekman layer are (9a) and (9b). Neglecting the terms which
contain derivatives and do not contain the Taylor number
we obtain the simplified form of the Euler-Lagrange equa-
tions for the boundary of the optimum field

−α6
1w1 + Ta

d2w1

dz2
+ α4

1θ1 = 0, (27a)

−α2
1f1 + Ta1/2 dw1

dz
= 0, (27b)

− α2
1

RF1

d2θ1

dz2
+

d2

dz2
[w1(1− w1θ1)] = 0. (27c)

For the lower boundary layer we introduce the coordinate
ηl = z/δl. δl depends on the Rayleigh and Taylor num-
bers and can be connected to the thickness of the lower
boundary layer of the optimum field. We rescale w1 and
θ1: w1 = Alŵ1; θ1 = θ̂1/Al. Al depends on the wave num-
bers α1, Taylor number, and δl

Al =
α2

1δl
Ta1/2

√
ln
(
Ta

α6
1δ

2
l

)
− ln ln

(
Ta

α6
1δ

2
l

)
. (28a)
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Al must satisfy the relationship

α2
1 = RFA2

l . (28b)

The solutions for ŵ1 and θ̂1 are: ŵ1 = ηl; θ̂1 = ηl/(1+η2
l ).

For the upper intermediate layer the coordinate is ξu =
α3

1(1− z)/Ta1/2 and the solution for w1 is

w1 =
ξu
α1

√
ln
(

1
ξ2
u

)
− ln ln

(
1
ξ2
u

)
. (29)

The solutions for the upper Ekman layers are (12a) and
(12b). For the upper boundary layer: w1 = Auŵ1; θ1 =
θ̂1/Au and

Au =
α2

1δu
Ta1/2

√
ln
(
Ta

α6
1δ

2
u

)
− ln ln

(
Ta

α6
1δ

2
u

)
. (30a)

In addition the following relationship must be satisfied

α2
1 = RFA2

u. (30b)

The solutions for ŵ1 and θ̂1 are: ŵ1 = ηu; θ̂1 = ηu/(1+η2
u).

The solution for ŵ1 holds in the whole boundary layer
except for a small region near the fluid boundary where
the stress-free boundary conditions must be satisfied.

The relationships for the convective heat transport F1

and for the thicknesses of the boundary layers of the op-
timum field δu,l can be obtained by (28a, 30a) and

F1 =
4
π

1− α4
1/R

δu + δl + 1
2δlα2

1
+ 1

2δuα2
1

, (31a)

∂F1

∂α1
= 0. (31b)

Assuming that the thicknesses of the boundary layers are
of the same order we obtain the solutions

α1 =
(
R

5

)1/4

, (32a)

F =
64R3/2

25
√

5π2Ta

×
[
ln
(

64R3/2

5
√

5π2Ta

)
− ln ln

(
64R3/2

5
√

5π2Ta

)]
, (32b)

and for the thicknesses of the boundary layers

δu ∝ δl =
5
√

5πTa
8R3/2

×
[
ln
(

64R3/2

5
√

5π2Ta

)
− ln ln

(
64R3/2

5
√

5π2Ta

)]
.

(32c)

3.4 Case 4: Boundary layer is thicker than the Ekman
layer and O(R1/4) � O(Ta1/6) � α1

� O((Ta/R)1/2) � O(R1/8)

For the layers of the optimum fields from the midplane
of the fluid layer in the direction of the rigid boundary
of the fluid layer we obtain the following solution of the
Euler-Lagrange equation of the variational problem for w1

in the intermediate layer

w1 =
z + z0

κα1

√
ln
(

1
(z + z0)2

)
− ln ln

(
1

(z + z0)2

)
.

(33a)

We note that κ2 = Ta/α6
1 is a large quantity and (33a) is

a solution of the corresponding Euler-Lagrange equations
for small values of z. This solution satisfies also the first in-
tegral of the corresponding Euler-Lagrange equation. The
matching between the intermediate and boundary layer
leads to the following relationship for w1

w1 =
α2

1δlηl

Ta1/2

√
ln
(

1
δ2
l

)
− ln ln

(
1
δ2
l

)
. (33b)

In addition α2
1/(RF1A

2
l ) = 1. ηl = z/δl is the coordinate

in the lower boundary layer of the optimum field. For the
layers from the midplane of the fluid layer in the direction
of the upper stress-free boundary of the fluid layer we
have as a solution for w1 in the corresponding intermediate
layer

w1 =
z + z∗0
κα1

√
ln
(

1
(z + z∗0)2

)
− ln ln

(
1

(z + z∗0)2

)
.

(34a)

The matching between the upper intermediate and bound-
ary layers leads to the solution for w1 in the upper bound-
ary layer

w1 =
α2

1δuηu

Ta1/2

√
ln
(

1
δ2
u

)
− ln ln

(
1
δ2
u

)
. (34b)

In addition α2
1/(RF1A

2
u) = 1 and the coordinate in this

layer is ηu = (1− z)/δu. The equations for the calculation
of the upper bounds are

F1 =
2(1− α4

1/R)
π(δl + 1/(2δlα2

1))
, (35a)

α2
1

RF1A2
u

=
α2

1

RFA2
l

= 1, (35b)

Al =
α2

1δl
Ta1/2

√
ln
(

1
δ2
l

)
− ln ln

(
1
δ2
l

)
, (35c)
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Au =
α2

1δu
Ta1/2

√
ln
(

1
δ2
u

)
− ln ln

(
1
δ2
u

)
. (35d)

The obtained solutions are

F =
4Rα2

1

π2Ta

[
ln
(

4R2α4
1

π2Ta2

)
− ln ln

(
4R2α4

1

π2Ta2

)]
, (36a)

δu ∝ δl =
πTa

2Rα2
1

[
ln
(

4R2α4
1

π2Ta2

)
− ln ln

(
4R2α4

1

π2Ta2

)]−1

.

(36b)

4 Fluid layer with two stress-free boundaries

4.1 Case 1: Ekman layer is thicker than the boundary
layer and O(Ta1/8)� α1 � O(R1/4)

The rotation effects are important in the internal layers
of the optimum field and the intermediate layers expand
in the direction of the internal layers. We assume that
w1θ1 ≈ 1 holds in this region of the fluid layer. Because
of the symmetry it is sufficient to discuss the layers of
the optimum fields from the midplane of the fluid layer
to the lower rigid boundary of the fluid layer. Assuming
that the terms in the Euler-Lagrange equations which con-
tain derivatives and do not contain the Taylor number are
much smaller than the other terms we obtain the equa-
tions (5a–c). They can be reduced to the equation (6)
possessing solution (7a). Assuming that w1θ1 ≈ 1 holds
also in the Ekman layers we obtain the equations (8a, 8b)
plus corresponding boundary conditions. The solutions of
the Euler-Lagrange equations are

w1 = c[1− e−φ cos(φ)], (37a)

f1 =
1
2
Ta1/4

[
−
√

2ce−φ cos(φ) +
√

2ce−φ sin(φ)

−2
√

2cφ+ 2kTa1/4
]
. (37b)

φ = Ta1/4z/
√

2 is the coordinate in the Ekman layer and
k is an integration constant determined by the boundary
condition for f1 on φ = 0. The constants c and z0 are
determined by a matching of the solutions of the Euler-
Lagrange equations between the intermediate and Ekman
layers of the optimum field. The result is

z0 =
√

2Ta1/4

α2
1

, (38a)

c =
√

2
Ta1/4

√
ln
(

α4
1

2Ta1/2

)
− ln ln

(
α4

1

2Ta1/2

)
. (38b)

The assumption in the boundary layer is that the sig-
nificant terms in the Euler-Lagrange equations are the
terms containing the highest derivatives. Thus the Euler-
Lagrange equations are reduced to (14a–c). Introducing
the boundary-layer coordinate η = z/δ where δ can
be connected to the thickness of the boundary layer of
the field w1θ1 and matching the solutions of the Euler-
Lagrange equations of the variational problem between
the Ekman and boundary layers we obtain the following
relationships for w1 and f1 in the boundary layer

w1 =
cδTa1/4η√

2
, (39a)

f1 = Ta1/2

[
k − c√

2Ta1/4

(
1 +

δ2Ta1/2η2

2

)]
. (39b)

Assuming that (41b) is valid we obtain the following
equation for

θ1 =
√

2θ̂1/cδTa
1/4

d2θ̂1

dη2
+ η(1− ηθ̂1) = 0 (40)

with the boundary condition θ̂1 = 0 at η = 0.
The equations we have to solve for the boundary layer

thickness and for the convective heat transport are

F1 =
1− α4

1/R

2δD
, (41a)

where D = I + J and I and J are the same as Iu and Ju

from (18e) and (18g).

c2δ4Ta1/2RF1 = 2. (41b)

The solutions are

δ = (2D)1/3R−1/3(1− α4
1/R)−1/3

×
[
ln
(

α4
1

2Ta1/2

)
− ln ln

(
α4

1

2Ta1/2

)]−1/3

, (42a)

F1 = (2D)−4/3R1/3(1− α4
1/R)4/3

×
[
ln
(

α4
1

2Ta1/2

)
− ln ln

(
α4

1

2Ta1/2

)]1/3

. (42b)

In order to obtain a maximum for the convective heat
transport we take into account that F1 increases with in-
creasing α1 and that the relationship α1 ≤ O(R1/4) must
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be satisfied. Thus in the discussed in this section interval
for α and when α1 ∝ O(Ta1/6) we obtain

δ ∝ (2D)1/3R−1/3

×
[

ln(Ta1/6/2)− ln ln(Ta1/6/2)
]−1/3

, (43a)

F1 ∝ (2D)−4/3R1/3

×
[

ln(Ta1/6/2)− ln ln(Ta1/6/2)
]1/3

. (43b)

4.2 Case 2: Ekman layer is thicker than the boundary
layer and O((Ta/R)1/2)� α1 � O(Ta1/8)

In the intermediate layer of the optimum field w1θ1 ≈ 1
and the solutions of the Euler-Lagrange equations of the
variational problem are

w1 = w0/α1; θ1 = α1/w0; f1 = α3
1(1/2− z)/(w0Ta).

Solving the Euler-Lagrange equations for the Ekman layer
and matching the solutions on the boundary between the
intermediate and Ekman layers we obtain

w0 = 2−1/4α2
1Ta

−5/8.

This relationship as well as the obtained by the solving of
the Euler-Lagrange equations

c2δ4Ta1/2RF1 = 2

with c = 2−1/4α1Ta
−5/8, and finally

F = (1− α4
1/R)/(2δD),

with D = I + J , and I and J are the same as Iu and Ju

from (18e) and (18g), lead to the following results for the
thickness of the boundary layer of the optimum field and
for the upper bound on the convective heat transport

δ = 25/6D1/3(R − α4
1)−1/3Ta1/4α

−2/3
1 , (44a)

F = 2−11/6D−4/3α
2/3
1 R1/3(1− α4

1/R)4/3Ta−1/4. (44b)

As the convective heat transport F1 increases with in-
creasing α1 a maximum of F1 can be obtained when
α1 → O(Ta1/8). Then

F ∝ 2−11/6D−4/3R1/3Ta−1/6, (45a)

δ = 25/6D1/3R−1/3Ta1/6. (45b)

4.3 Case 3: Boundary layer is thicker than the Ekman
layer and O((R ln R)4/3)� Ta� O(R3/2)

Here we have two possibilities: optimum fields without
Ekman layer (three layer optimum fields) and optimum
fields with Ekman layer (four layers optimum fields). Let
us consider first the three-layers optimum fields. The lay-
ers of the optimum fields are: internal, intermediate and
boundary ones. For the internal layer we assume w1θ1 ≈ 1,
λ� F and that the term containing derivatives are van-
ishingly small in comparison to the other terms in the
Euler-Lagrange equations. Thus we obtain the solutions
for this layer

w1 = 1/α1; θ1 = α1; f1 = 0.

For the intermediate layers the coordinate is ξ =
zα3

1/Ta
1/2. Remembering that Ta � α6

1 and solving the
obtained equation for w1 we obtain for the case of small ξ

w1 =
ξ

α1

√
ln
(

1
ξ2

)
− ln ln

(
1
ξ2

)
. (46)

For the boundary layers the coordinate is η =
Ta1/2z/(α1δ). Let w1 = Aŵ1 and θ1 = θ̂1/A where A is
some function to be determined by a matching of the so-
lutions of the Euler-Lagrange equations between interme-
diate and the boundary layers. Assuming that the terms
containing the highest derivatives are dominant we obtain
for the Euler-Lagrange equations for the boundary layers

d2ŵ1

dη2
= 0, (47a)

α2
1

RFA2

d2θ̂1

dη2
− d2

dη2
[ŵ1(1− ŵ1θ̂1)] = 0, (47b)

The solution for ŵ1 is ŵ1 = η. Matching the solutions for
w1 between intermediate and boundary layers we obtain
for A

A =
α3

1δ

Ta

√
ln
(
Ta2

α8
1δ

2

)
− ln ln

(
Ta2

α8
1δ

2

)
. (48a)

Thus for θ̂1 we obtain from (47b)

Ta2

RFδ2α4
1

[
ln
(
Ta2

α8
1δ

2

)
− ln ln

(
Ta2

α8
1δ

2

)]−1

θ̂1

= ŵ1(1− ŵ1θ̂1). (48b)

Assuming that

Ta2

RFδ2α4
1

[
ln
(
Ta2

α8
1δ

2

)
− ln ln

(
Ta2

α8
1δ

2

)]−1

= 1, (49a)
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we obtain the solution for θ̂1

θ̂1 =
η

1 + η2
, (49b)

which satisfies the corresponding boundary conditions.
The equations for the upper bounds on the convective heat
transport and for the thickness of the boundary layer of
the optimum field w1θ1 are (49a) and

F1 =
2Ta1/2

πα1δR

[
1−

(
α4

1 +
πTa1/2

4α1δA2

)]
(50a)

∂F1

∂α1
= 0. (50b)

The solutions for the upper bound on the convective heat
transport, for the thickness of the boundary layer, and for
the optimum wave number are

α1 =
(
R

5

)1/4

, (51a)

F =
64R3/2

25
√

5π2Ta

×
[
ln
(

64R3/2

5
√

5π2Ta

)
− ln ln

(
64R3/2

5
√

5π2Ta

)]
, (51b)

and for the thicknesses of the boundary layers which are
assumed to be of the same order

δ =
5
√

5πTa
8R3/2

×
[
ln
(

64R3/2

5
√

5π2Ta

)
− ln ln

(
64R3/2

5
√

5π2Ta

)]
. (51c)

For the case of four-layers optimum field the internal
layer is included in the intermediate layer as an effect of
the strong rotation. In the intermediate layer the solution
for w1 is

w1 =
ξ

α1

√
ln
(

1
ξ2

)
− ln ln

(
1
ξ2

)
(52)

where ξ = α3
1z/Ta

1/2 is the coordinate in the intermedi-
ate layer of the optimum field. For the Ekman layer the
coordinate is φ = Ta1/4z/

√
2 and the solutions of the

Euler-Lagrange equations are

w1 = c
[
1− eφ cos(φ)

]
(53a)

f =
Ta1/4

2

[
−
√

2ce−φ cos(φ)

+
√

2ce−φ sin(φ) − 2
√

2cφ+ 2kTa1/4
]

(53b)

where

k =
c√

2Ta1/4
(53c)

and

c =
√

2
Ta1/4

√
ln
(
Ta1/2

2α2
1

)
− ln ln

(
Ta1/2

2α2
1

)
. (53d)

The solutions of the Euler-Lagrange equations for the
boundary layer of the optimum field are w1 = Aη; θ1 =
η̂/(A(1 + η2)) where η = z/δ is the coordinate in the
boundary layer of the optimum field and

A =
α2

1δ

Ta1/2

√
ln
(
Ta

α6
1δ

2

)
− ln ln

(
Ta

α6
1δ

2

)
. (54)

For calculation of α1 and F1 we have the equations

α2
1

RF1A2
= 1, (55a)

F1 =
1− (1/R)〈| ∇θ1 |2〉
〈(1− w1θ1)2〉 , (55b)

∂F1

∂α1
= 0. (55c)

The solutions are the same as (51c) and (51b). Thus when
the rotation is strong enough the solutions of the Euler-
Lagrange equations of the variational problem based on
the optimum fields with and without Ekman layer lead to
the same thickness of the boundary layer of the optimum
field and as a consequence to the same upper bound on
the convective heat transport.

4.4 Case 4: Boundary layer is thicker than the Ekman
layer and O(R1/4) � O(Ta1/6) � α1

� O
((

Ta
R

)1/2
)
� O(R1/8)

The solution of the Euler-Lagrange equations of the
variational problem for w1 in the intermediate layer is

w1 =
z

α1κ

√
ln
(

1
z2

)
− ln ln

(
1
z2

)
, (56)

where κ = Ta/α6
1 is a large quantity. We match the

solutions between the intermediate and boundary layers
(Ekman layer is very thin) and obtain the relationships:
w1 = Aη; θ1 = η/(A(1+η2)). η = z/δ is the coordinate in
the boundary layer, δ can be connected to the thickness of
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the boundary layer of the optimum field. The relationship
for A is

A =
α2

1δ

Ta1/2

√
ln
(

1
δ2

)
− ln ln

(
1
δ2

)
. (57)

For the upper bounds on the convective heat transport
and the corresponding thickness of the boundary layer of
the optimum field we have to solve the equations

F1 =
2(1− α4

1/R)
π(δ + 1/(2δα2

1))
(58a)

RF1α
2
1δ

2

Ta

[
ln
(

1
δ2

)
− ln ln

(
1
δ2

)]
= 1. (58b)

The solutions are

F =
4Rα2

1

π2Ta

[
ln
(

4R2α4
1

π2Ta2

)
− ln ln

(
4R2α4

1

π2Ta2

)]
, (59a)

δu ∝ δl =
πTa

2Rα2
1

×
[
ln
(

4R2α4
1

π2Ta2

)
− ln ln

(
4R2α4

1

π2Ta2

)]−1

. (59b)

5 Fluid layer with two rigid boundaries

5.1 Case 1: Ekman layer is thicker than the boundary
layer and O(Ta1/8)� α1 � O(R1/4)

The rotation effects are important in the internal layers
of the optimum field and the intermediate layers expand
in the direction of the internal layers. We assume that
w1θ1 ≈ 1 holds in the intermediate layer of the optimum
fields. Assuming that the terms in the Euler-Lagrange
equations which contain derivatives and do not contain
the Taylor number are much smaller than the other terms
we obtain the equations (5a–c) which can be further re-
duced to the equation (6) possessing solution (7a). As-
suming further that w1θ1 ≈ 1 holds also in the Ekman
layers we obtain the equations (8a, 8b) plus correspond-
ing boundary conditions. The matching of the solutions
of the Euler-Lagrange equations between the intermediate
and Ekman layers lead to the relationships (11a) for z0 and
(11b) for c. In the boundary layer the significant terms in
the Euler-Lagrange equations are these ones which contain
the highest derivatives. Thus the Euler-Lagrange equa-
tions are reduced to (14a–c). Introducing the boundary-
layer coordinate η = z/δ where δ can be connected to the
thickness of the boundary layer of the field w1θ1 we obtain

the following solutions of the Euler-Lagrange equations in
the boundary layer

w1 =
1√
2
cTa1/2δη2, (60a)

f1 =
√

2cTa1/2δη. (60b)

The equations we have to solve in order to obtain
expressions for the upper bound on the convective heat
transport, for the thickness of the boundary layer δ, and
for the wave number α1 corresponding to the optimum
fields are

F1 =
1− α4

1/R

2δD
, (61a)

RF1δ
6c2Ta = 2, (61b)

c =
1

2Ta1/4

√
ln
(

2α4
1

Ta1/2

)
− ln ln

(
2α4

1

Ta1/2

)
. (61c)

where D = I + J ,and I and J are the same as Il and Jl

from (18d) and (18f). The solutions are

δ = 24/5D1/5(R − α4
1)−1/5Ta−1/10

×
[
ln
(

2α4
1

Ta1/2

)
− ln ln

(
2α4

1

Ta1/2

)]−1/5

, (62a)

F1 = 2−9/5D−6/5R1/5(1− α4
1/R)6/5Ta1/10

×
[
ln
(

2α4
1

Ta1/2

)
− ln ln

(
2α4

1

Ta1/2

)]1/5

. (62b)

We cannot directly optimise F1 with respect to α1

because this will move the integral of the validity of
the obtained solution in an area of Rayleigh and Taylor
numbers in which no convective motion is possible i.e.
we shall come to a contradiction with the assumption
that we have thermal convection in the investigated fluid
layer. In order to obtain a maximising expression for the
convective heat transport we take into an account that
F1 in (62b) increases with increasing α1 but α4

1/R must
be smaller than 1. Thus a maximum of the convective
heat transport in the interval

O(Ta1/8)� α1 ≤ O(R1/4), (63)

can be obtained by the assumption α1 ∝ Ta1/6 which
leads us to the following relationships for the convective
heat transport F1 and for the boundary layer thickness δ

δ = 24/5D1/5R−1/5Ta−1/10

× [ln(2Ta1/6)− ln ln(2Ta1/6)]−1/5, (64a)

F1 = 2−9/5D−6/5R1/5Ta1/10

× [ln(2Ta1/6)− ln ln(2Ta1/6)]1/5. (64b)
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5.2 Case 2: Ekman layer is thicker than the boundary
layer and O((Ta/R)1/2)� α1 � O(Ta1/8)

We assume that w1θ1 ≈ 1 overall except in the Ekman
and boundary layers of the optimum field. The solutions
of the Euler-Lagrange equations in the intermediate layer
are w1 = w0/α1; θ1 = α1/w0, where w0 must be a small
constant as well as α2

1f1 � 1. The solution for f1 is

f1 = α3
1(1/2− z)/(w0Ta).

The solutions for the Ekman layer are (9a) and (9b)
(where we put c and φinstead of cl and φl) with Ekman
layer coordinate φ = Ta1/4z/

√
2. c is a constant which

together with w0 has to be determined from the match-
ing of the solutions of the Euler-Lagrange equations of the
variational problem between the intermediate and Ekman
layers of the optimum field. The results of this matching
are:

w0 = 2−3/4α2
1Ta

−3/8; c = 2−5/4α1Ta
−3/8

and because of the assumption α1 � O(Ta1/8) under
which we discuss this case the quantities w0 � 1/Ta1/8

and α2
1f1 � 1/Ta1/4 are small indeed.From the Euler-

Lagrange equation for the boundary layer of the optimum
field we obtain the relationship

RF1δ
2c2Ta = 2. (65a)

For F1 we have

F1
1− α4

1/R

2δD
, (65b)

where D = Il + Jl. Il, Jl are the same as (18d) and (18f).
(65a) and (65b) lead to the following solutions for δ and
F1

δ = 21/2(4D)1/5R−1/5Ta−1/20α
−2/5
1 (1− α4

1/R)−1/5,
(66a)

F = 2−19/10(D)−6/5R1/5Ta1/20α
2/5
1 (1− α4

1/R)6/5.
(66b)

As F1 increases with increasing α1 its maximum value can
be obtained when α1 → O(Ta1/8). The result is

F1 ∝ 2−19/10D−6/5R1/5Ta1/10, (67a)

δ ∝ 21/2(4D)1/5R−1/5Ta−1/10. (67b)

Thus we obtain the same power law dependencies for δ
and F1 as in the case for a fluid layer with rigid bound-
aries discussed above (except the corresponding logarith-
mic corrections).

5.3 Case 3: Boundary layer is thicker than the Ekman
layer and O((R ln R)4/3)� Ta� O(R3/2)

The boundary layer becomes thicker than the Ekman
layer. The rotation leads to a merging of the internal
and intermediate layers of the optimum fields. In the
intermediate layer we have w1θ1 ≈ 1 in addition to the
equations (5a) and (5b). Introducing the coordinate
ξ = α3

1z/Ta
1/2 we obtain the solution for w1 in this layer

w1 =
ξ

α1

√
ln
(

1
ξ2

)
− ln ln

(
1
ξ2

)
. (68)

In the Ekman layer w1θ1 ≈ 1 holds further. The Euler-
Lagrange equations are (8a) and (8b) and the solutions
for w1 and f1 are: w1 = c

√
2 − 2ce−φ cos(φ − π/4);

f1 = Ta1/4(2c − 2ce−φ cos(φ)). φ = Ta1/4z/
√

2 is the
coordinate in the Ekman layer and c is an appropriate
constant of integration. Let us introduce the boundary
layer coordinate η = z/δ (δ can be connected to the
thickness of the boundary layers of the optimum field
w1θ1). A matching between the intermediate and the
boundary layer leads to the following relationships for
w1 = Aŵ1 in the boundary layer

A =
α2

1

Ta1/2

√
ln
(
Ta

α6
1δ

2

)
− ln

(
Ta

α6
1δ

2

)
, (69)

and ŵ1 = η that holds in almost the whole boundary layer
except for a small region near the fluid boundary where
ŵ1 changes in order to satisfy the boundary conditions.
We assume that these changes are negligible from the
point of view of the integrals we have to calculate in
order to obtain the upper bound on the convective
heat transport. In the boundary layer the terms in the
Euler-Lagrange equations which contain derivatives and
do not contain the Taylor number are small in comparison
to the other terms in the Euler-Lagrange equation. Thus
we obtain the following equation for θ1 = θ̂1/A

α2
1

RF1A2
θ̂1 = ŵ1(1− ŵ1θ̂1). (70)

Assuming further that α2
1/(RF1A

2) = 1 the solution for
θ̂1 is

θ̂1 =
η

1 + η2
, (71)

which satisfies the corresponding boundary condition on
the lower boundary of the fluid layer.

The equations for the upper bound on the convective
heat transport as well for the corresponding wave number
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and thickness of the boundary layers are

F1 = 2
1− (α4

1 + π/(4δA2))/R
(πδ)

, (72a)

Ta = α2
1δ

2RF1

[
ln
(
Ta

α6
1δ

2

)
− ln

(
Ta

α6
1δ

2

)]−1

, (72b)

∂F1

∂α1
= 0. (72c)

Their solutions are

α1 =
(
R

5

)1/4

, (73a)

F1 =
64R3/2

25
√

5π2Ta

×
[
ln
(

64R3/2

5
√

5π2Ta

)
− ln ln

(
64R3/2

5
√

5π2Ta

)]
, (73b)

δ =
5
√

5πTa
8R3/2

×
[
ln
(

64R3/2

5
√

5π2Ta

)
− ln ln

(
64R3/2

5
√

5π2Ta

)]−1

. (73c)

5.4 Case 4: Boundary layer is thicker than the Ekman
layer and O(R1/8) � O((Ta/R)1/2) � α1

� O(Ta1/6) � O(R1/4)

When Ta increases further κ2 = Ta/α6
1 is a large quantity.

Equations (5a) and (5b) lead to the following solution for
w1 in the intermediate layer

w1 =
z + z0

α1κ

×
√

ln
(

1
(z + z0)2

)
− ln ln

(
1

(z + z0)2

)
. (74)

In the Euler-Lagrange equations in the boundary layer
the terms that contain derivatives and do not contain the
Taylor number are negligible. Thus the equations for w1

and θ1 are

−α6
1w − 1 + Ta

d2w1

dz2
+ α4

1θ1 = 0 (75a)

−α
2
1Ta

RF1

d2θ1

dz2
+ Ta

d2

dz2
[w1(1− w1θ1)] = 0. (75b)

Introducing the boundary layer coordinate η = z/δ and
solving the Euler-Lagrange equations we obtain

w1 = Aη, (76a)

A =
α2

1δ

Ta1/2

√
ln
(

1
δ2

)
− ln ln

(
1
δ2

)
, (76b)

θ1 =
1
A

η

1 + η2
, (76c)

α2
1

RF1A2
= 1, (76d)

F1 =
2(1− α4

1/R)
π(δ + 1/(2δα2

1))
· (76e)

The last two equations lead to the upper bound

F =
4Rα2

1

π2Ta

[
ln
(

4R2α4
1

π2Ta2

)
− ln ln

(
4R2α4

1

π2Ta2

)]
, (77a)

and to corresponding value of δ:

δ =
πTa

2Rα2
1

[
ln
(

4R2α4
1

π2Ta2

)
− ln ln

(
4R2α4

1

π2Ta2

)]−1

. (77b)

6 Intervals of validity of the obtained bounds

For the case 1 the constants z0 and z∗0 must be small.
Moreover F1 must be large and positive. Thus α1 �
O(R1/4). Remembering that we consider the interval of
large Taylor numbers O(Ta1/6)� α1 we have the follow-
ing interval of the application of the obtained solutions

O(Ta1/8)� α1 � O(Ta1/6) < O(R1/4). (78)

For case 2 and rigid-stress-free boundaries the interval
of the validity of the obtained bounds is determined by
the requirements that we discuss the case α1 � O(Ta1/8),
that the convective heat transport for the discussed case
must be greater than the convective heat transport in the
corresponding case where the boundary layers of the opti-
mum field are thicker than the Ekman layers, and finally
the the boundary layers of the optimum field must be thin.
Thus we obtain

O((Ta/R)1/2)� α1 � O(Ta1/8)� O(R3/14). (79)

For the other two kinds of boundary conditions the
same requirements lead to the interval of validity
O((Ta/R)1/2)� α1 � O(Ta1/8).

For the case 3 the requirements for the region of
validity of the obtained bounds are two: large value
of the convective heat transport, from which follows
O(Ta) � O(R3/2), and small size of the boundary layer
which leads to O(Ta)� O((R lnR)4/3). For the intervals
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Fig. 3. Comparison of the bounds on the convective heat transport. Panel (a): Fluid layer with rigid boundaries, case 1. Solid
line: upper bound obtained by Hunter and Riahi [7]. Dotted line: upper bound obtained in this article. Panel (b): Fluid layer
with stress-free boundaries, case 3. Solid line: upper bound obtained by Chan [6]. Dotted line: upper bound obtained in this
article.

of the validity of the obtained bound in the case 4 we note
the following. We discuss the interval α1 � O(Ta1/6)
and from equation (35a) it is clear that α1 < O(R1/4).
From (36a) we must have also α1 � O((Ta/R)1/2) and
finally α1 � O(R1/8). Thus the interval of validity of the
bounds is

O(R1/4)� O(Ta1/6)� α1

� O

((
Ta

R

)1/2
)
� O(R1/8). (80)

As a motivation for such a interval we note that for the
fluid layer with two stress-free boundaries as well as for
the fluid layer with two rigid boundaries and with rigid
lower boundary and stress-free upper boundary we have
from the linear stability theory that for the case when the
instability is set in as stationary convection we obtain the
asymptotic relationships for the critical Rayleigh number
as well as for the corresponding wave number for the case
Ta→∞ : Rc ∝ O(Ta2/3) and αc ∝ O(Ta1/6) [51].

7 Discussion

In this article we have obtained upper bounds on the con-
vective heat transport in a fluid layer heated from below
and rotating about a vertical axis. The bounds are derived
on the basis of asymptotic solutions of the Euler-Lagrange
equations for the corresponding variational problem, ob-
tained by application of the Howard-Busse method of the
optimum theory of turbulence to the Boussinesq equa-
tions. We have shown that for the case of a fluid layer
with stress-free boundaries the Euler-Lagrange equations
of the variational problem possess solutions based on an
optimum field with four layers (Ekman layer inclusive).
The coexistence of three layers solution and four layers
solution of the Euler-Lagrange equations is a consequence
of their nonlinearity.

In the case without rotation [24] the thickness of the
boundary layer of the optimum field for the rigid bound-
ary is larger than the thickness of the boundary layer cor-
responding to the stress-free boundary. Thus the upper

bound on the convective heat transport for the case of
rigid lower boundary and stress-free upper boundary lies
between the bound for the cases of rigid boundaries and
stress-free boundaries. For the case with rotation the as-
sumptions that one of the two boundary layers is much
thicker than the other one conflicts with the other as-
sumptions made in the process of the developing of the
asymptotic theory. The only assumption which does not
lead to a conflict with the other assumptions is that the
thickness of both boundary layers is of the same order.
The difference between this assumption and the assump-
tion that the rigid boundary layer is much thicker than the
stress-free boundary layer is in the terms Du,l. If we as-
sume that the boundary layer thicknesses are of the same
order, we obtain the term Du + Dl in the relationships
for the upper bound, wave number and thicknesses of the
boundary layers (the assumption that the rigid boundary
layer is much thicker than the stress-free boundary layer
of the corresponding optimum field leads to the term Dl

instead of Du +Dl).
When the Taylor and Rayleigh numbers are high

enough the boundary layers of the optimum fields for rigid,
stress-free and rigid-stress free boundary conditions have
the same thickness. This leads to the same expressions for
the convective heat transport for all three cases.

Hunter and Riahi [7] have discussed the case of rigid
boundaries and their results can be compared to the re-
sults of Section 4 of this article. The results of Chan [6]
can be compared to the results of case 3 of Section 3.
For the case of rigid boundary conditions the boundary
layer of the optimum field for the solution used above is
thicker than the corresponding boundary layer of the op-
timum field for the solution of Hunter and Riahi. Thus
the value of the convective heat transport obtained here
is smaller than the value obtained in [7] for fixed Rayleigh
and Taylor numbers. For case 1 the difference between the
bound obtained here and the bound of Hunter and Riahi
depends only on the Taylor number. Case 2 leads to the
same results as in [7] and we present it as briefly as pos-
sible. In the cases 3 and 4 the difference depend on both
Rayleigh and Taylor numbers. The comparison is shown
in Figure 3. For panel (a) the Taylor number has the fixed
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Fig. 4. Comparison of the bounds on the convective heat
transport to the experimental results of Rossby. Circles: Ex-
perimental results of Rossby for water at Ta = 106. Diamonds:
Results of Rossby multiplied by 2. Solid line: upper bound of
Hunter and Riahi. Dashed line: upper bound obtained in this
article.

value Ta = 1020. For panel (b) the Rayleigh number is
fixed: R = 1040. This panel shows that the solution for in-
termediate layers of the optimum fields leads to correction
of the upper bound.

The obtained results can be compared to the exper-
imental results of Rossby [52]. The comparison is shown
in Figure 4. The bounds obtained by Hunter and Riahi
can be treated as upper bounds on the obtained in this
article upper bounds. For the case of the comparison to
the experimental results the bound (64b) is used. When
Ta = 106 we have the value F1 ≈ 1.15R1/5. The corre-
sponding bound of Hunter and Riahi is obtained when
the doubly logarithmic term in (64b) is omitted. The re-
sult is F1 ≈ 1.26R1/5 i.e. the Hunter and Riahi bound is
about 10% higher than the bound obtained in this article.

The comparison above is between experimental data
and asymptotic bounds. This explains the difference
for small values of Rayleigh number. With increasing
Rayleigh number the difference decreases but neverthe-
less the experimental values of Rayleigh number are far
from the asymptotic region where the assumptions made
for obtaining the upper bound hold satisfactory enough.
The comparison shows a tendency that with increasing
Rayleigh number the upper bounds come close to the ex-
perimental data: the ratio between the experimental data
and the bound becomes smaller than 2.

The bounds obtained in this article can be compared
to the bounds obtained in [49] and [50]. We note that

– An useful feature of the Doering-Constantin method
is that every background field that satisfies the corre-

sponding conditions, leads quickly to an upper bound
on the investigated quantity. Among the bounds that
can be obtained by the admissible background fields
we can find the lowest one. This bound should be
not higher than the bound obtained by means of the
Howard-Busse method.

– The bounds, obtained in [49,50] have larger applica-
tion area with respect to the Rayleigh and Taylor num-
bers in comparison to the bounds, obtained in this arti-
cle. As we shall see, the bounds obtained here are lower
but we must keep in the mind that these bounds are
obtained on the basis of the 1−α-solution of the varia-
tional problem. The bounds, obtained by the multi-α-
solutions of the variational problem are higher than the
bounds, obtained by the1−α-solution of the variational
problem. It is well known that each of these bounds
has its area of application and can be compared to the
Doering-Constantin bounds only in this area. One fu-
ture direction of investigations will be the problem of
the construction of a theory of the multi-α bounds and
comparison of the obtained bounds to these of Doering
and Constantin in order to see whether all of the multi-
α-bounds will be lower than the Doering-Constantin
bound or some of them will be higher.

– For the intervals of Rayleigh and Taylor numbers, dis-
cussed in this article, the obtained bounds must be
compared to the following upper bound obtained by
means of the Doering-Constantin method

Nu ≤ 0.6635R2/5. (81)

We note that the background field used for obtaining
this bound has a minimum layer structure: two bound-
ary layers and internal layer. The optimum fields, dis-
cussed in this article have more complex structure,
that includes also intermediate layers and Ekman lay-
ers. One can consider the inclusion of more layers in
the optimum fields as imposing additional constraints
on the variational problem, that lead to further de-
creasing of the manifold of the fields among which the
optimal ones are searched.

In order to compare the obtained in this article bounds
to the bound (81) we have to express our bounds as a
function of the Rayleigh number. We shall express all
quantities in the equations for the bounds by means of
the Rayleigh number. We shall put the maximum possi-
ble value of the corresponding quantities if they are in
the numerator and the minimum possible values of the
quantities that are in the denominator. Thus we shall ob-
tain an upper bound on the corresponding upper bound
and this higher upper bound will be a function only of the
Rayleigh number. The result for the case 1 for a fluid layer
with rigid boundaries is

Nu < R1/3[ln(2R2/9)− ln ln(2R2/9)]1/5. (82a)
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The result for the case 1 of a fluid with stress-free bound-
aries is

Nu < R1/3[ln(R1/3/2)− ln ln(R1/3/2)]1/5. (82b)

For the cases 2–4 the results are the same for the two kinds
of boundary conditions. Thus for:

– Case 2:

Nu < R1/3 (82c)

– Case 3: Assuming that ln(R4/3) > 1 we obtain

Nu < R1/6[ln(R1/6)− ln ln(R1/6)] (82d)

– Case 4:

Nu < R1/4[ln(R1/2)− ln ln(R1/2)]. (82e)
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Fig. 5. Comparison of the right-hand sides of the inequalities
(81) and (82) for interval of Rayleigh numbers between 106

and 108. Circles: the bound (81). Squares: the bound (82a).
Diamonds: the bound (82b). Triangles: the bound (82c). +:
the bound (82d). ×: the bound (82e).

In order to get an impression of the development of the
right-hand sides of (81) and (82) with increasing Rayleigh
number we present them in Figure 5. The Euler-Lagrange
equations obtained by the Howard-Busse method can
be obtained also by means of the Doering-Constantin
method. Thus Figure 5 is a visualisation of the size of
the effect that the inclusion of more assumptions for the
layer structure of the optimum fields can have on the up-
per bounds on the convective heat transport.

References

1. L.N. Howard, J. Fluid Mech. 17, 405 (1963).
2. W.V.R. Malkus, Proc. Roy. Soc. London, Ser. A 225, 185

(1954).
3. W.V.R. Malkus, Proc. Roy. Soc. London, Ser. A 225, 196

(1954).
4. F. H. Busse, J. Fluid Mech. 37, 457 (1969).
5. S.-K. Chan, Stud. Appl. Math. 50, 13 (1971).
6. S.-K. Chan, J. Fluid Mech. 64, 477 (1974).
7. C. Hunter, N. Riahi, J. Fluid Mech. 72, 433 (1975).
8. N.K. Vitanov, Phys. Rev. E 62, 3581 (2000).
9. L.N. Howard, Ann. Rev. Fluid. Mech. 4, 473 (1972).

10. J.M. Strauss, Geophys. Fluid Dyn. 5, 261 (1973).
11. V.P. Gupta, D.D. Joseph, J. Fluid Mech. 57, 491 (1973).
12. J.M. Strauss, Phys. Fluids 17, 520 (1974).
13. J.M. Strauss, Dyn. Atm. Oceans 1, 71 (1976)
14. J.M. Strauss, Dyn. Atm. Oceans 1, 77 (1976)
15. F.H. Busse, Adv. Appl. Mech. 18, 77 (1978).
16. F.H. Busse, in Energy Stability and Convection , edited by

G.P. Galdi, B. Straughan (Pitman, Boston, 1988).
17. W.V.R. Malkus, L.M. Smith, J. Fluid Mech. 208, 479

(1989).
18. L.N. Howard, Stud. Appl. Math. 83, 273 (1990).
19. F.H. Busse, in Nonlinear Physics of Complex Systems,

edited by J. Parisi, S.C. Müller, W. Zimmermamm
(Springer, Berlin, 1996).

20. N.K. Vitanov, F.H. Busse, Z. Angew. Math. Phys. 48, 310
(1997).

21. N.K. Vitanov, Phys. Lett. A 248, 338 (1998).
22. N.K. Vitanov, F.H. Busse, Z. Angew. Math. Mech. 78,

S788 (1998).
23. N.K. Vitanov, Physica D 136, 322 (2000).
24. N.K. Vitanov, Phys. Rev. E 61, 956 (2000).
25. N.K. Vitanov, Eur. Phys. J. B 15, 349 (2000).
26. R.R. Kerswell, A.M. Soward, J. Fluid Mech. 328, 161

(1996).
27. N.K. Vitanov, F.H. Busse, Phys. Rev. E 63, 016303 (2001).
28. C.R. Doering, P. Constantin, Phys. Rev. Lett. 69, 1648

(1992).
29. C.R. Doering, P. Constantin, Phys. Rev. E 53, 5957

(1996).
30. P. Constantin, C.R. Doering, Nonlinearity 9, 1049 (1996)
31. C.R. Doering, J.M. Hyman, Phys. Rev. E 55, 7775 (1997).
32. R. Nicodemus, S. Grossmann, M. Holthaus, Physica D

101, 178 (1997).
33. R. Nicodemus, S. Grossmann, M. Holthaus, Phys. Rev.

Lett. 79, 4710 (1997).
34. R. Nicodemus, S. Grossmann, M. Holthaus, J. Fluid. Mech.

363, 281 (1998).
35. R. Nicodemus, S. Grossmann, M. Holthaus, J. Fluid. Mech.

363, 301 (1998).
36. N. Hoffmann, N.K. Vitanov, Phys. Lett. A 255 277 (1999).
37. R. Nicodemus, S. Grossmann, M. Holthaus, Eur. Phys. J

B 10, 385 (1999).
38. C.R. Doering, P. Constantin, J. Fluid Mech. 376, 263

(1998).
39. P. Constantin, C. Hallstrom, V. Putkaradze, Physica D

125, 275 (1999).
40. P. Constantin, C.R. Doering, J. Stat. Phys. 94, 159 (1999).
41. R.R. Kerswell, Physica D 100 355 (1997).
42. R.R. Kerswell, Physica D 121, 175 (1998).



266 The European Physical Journal B

43. R.R. Kerswell, Phys. Rev. E 59, 5482 (1999).
44. R.R. Kerswell, Phys. Lett. A 272, 230 (2000).
45. R.R. Kerswell, Phys. Fluids 13, 192 (2001).
46. C.R. Doering, E.A. Spiegel, R.A. Worthing, Phys. Fluids

12, 1955 (2000).
47. C.P. Caulfield, R.R. Kerswell, Phys. Fluids 13, 894 (2001).
48. R.A. Worthing, J. Fluid Mech. 431, 427 (2001).

49. P. Constantin, C. Hallstrom, V. Poutkaradze, J. Math.
Phys. 42, 773 (2001).

50. C.R. Doering, P. Constantin, J. Math. Phys. 42, 784
(2001).

51. S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability (Dower, New York, 1981).

52. H.T. Rossby, J. Fluid Mech. 36, 309 (1969).


